Web general

Webb Telescope infrared image of Jupiter: color composite

James Webb Space Telescope images of Jupiter display a stunning wealth of detail.

blue and green orb of Jupiter, with a fringe of orange-red auroras at both poles

[Click image to download high-resolution image] James Webb Space Telescope images of Jupiter display a stunning wealth of detail. A filter sensitive to auroral emission from ionized hydrogen (mapped into the red channel) reveals auroral ovals on the disk of the planet that extend to high altitudes above both the northern and southern poles. A different filter sensitive to high-altitude hazes (mapped into the green channel) highlights the polar hazes that swirl around the northern and southern poles, while a third filter highlights light reflected from the deeper main cloud (mapped in the blue channel). The Great Red Spot, the equatorial region and compact (including tiny) cloud regions appear white (or reddish-white) in this false-color image. Regions with little cloud cover appear as dark ribbons north of the equatorial region. Other dark regions here, both next to the Great Red Spot and in cyclonic features in the south hemisphere, are also dark-colored when observed in visible light. (Image credit: NASA, European Space Agency, Jupiter Early Release Science team. Image processing: Judy Schmidt)

FURTHER DETAILS ABOUT THE IMAGE:

Jupiter Color Composite: This false color composite image of Jupiter was obtained with James Webb Space Telescope’s NIRCam instrument on July 27, 2022. Several exposures in three different filters were assembled to create this mosaic, after being corrected for the rotation of the planet. The combination of filters yields an image whose colors denote the height of the clouds and the intensity of auroral emissions. The F360M filter (mapped to the red-orange colors) is sensitive to light reflected from the lower clouds and upper hazes. The red features in the polar regions are auroral emissions, caused by ions excited through collisions with charged particles at altitudes up to 1000 km above the cloud level. Auroral emission in red is evident in the northern and southern polar regions and reaches high above the limb of the planet. In the F212N filter (mapped to yellow-green colors), the gaseous methane in Jupiter’s atmosphere absorbs light; the greenish areas around the polar regions come from stratospheric hazes 100-200 km above the cloud level. The stratospheric haze that appears green in this composite is also concentrated in the polar regions, but extends down to equatorial latitudes and can also be seen along the limbs (edges) of the planet. The cyan channel holds the F150W2 filter, which is primarily sensitive to reflected light from the Jupiter’s deeper main cloud level at about one bar. The Great Red Spot, the hazy equatorial region and myriad small storm systems appear white (or reddish-white) in this false-color image. Regions with little cloud cover appear as dark ribbons north of the equatorial region. Some dark regions — for example, those next to the Great Red Spot and in cyclonic features in the southern hemisphere — are also dark-colored when observed in visible wavelengths.